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ABSTRACT

For an n-dimensional chaotic system, we extend the definition of the nonlinear local Lyapunov exponent (NLLE) from
one- to n-dimensional spectra, and present a method for computing the NLLE spectrum. The method is tested on three
chaotic systems with different complexity. The results indicate that the NLLE spectrum realistically characterizes the growth
rates of initial error vectors along different directions from the linear to nonlinear phases of error growth. This represents
an improvement over the traditional Lyapunov exponent spectrum, which only characterizes the error growth rates during
the linear phase of error growth. In addition, because the NLLE spectrum can effectively separate the slowly and rapidly
growing perturbations, it is shown to be more suitable for estimating the predictability of chaotic systems, as compared to the

traditional Lyapunov exponent spectrum.
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1. Introduction

The estimation of the average rates of divergence (or
convergence) of initially nearby trajectories in phase space
has been studied with (global) Lyapunov exponents, which
are used to quantify the average predictability properties of
a chaotic system (Eckmann and Ruelle, 1985; Wolf et al.,
1985). The sum of all the positive Lyapunov exponents is
an estimate of the Kolmogorov entropy K, and the inverse of
K is a measure of the total predictability of the system (Kol-
mogorov, 1941; Fraedrich, 1987, 1988). Considering that the
(global) Lyapunov exponents only provide a measure of the
total predictability of a system, various local or finite-time
Lyapunov exponents (Nese, 1989; Houtekamer, 1991; Yoden
and Nomura, 1993; Ziehmann et al., 2000) have been subse-
quently proposed to measure the local predictability around a
point xg in phase space. However, the existing global or local
Lyapunov exponents have limitations because they all satisfy
the assumption that the initial perturbations are sufficiently
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small and the tangent linear model (TLM) of a nonlinear sys-
tem could approximately govern their evolution (Lacarra and
Talagrand, 1988; Feng and Dong, 2003; Mu and Duan, 2003;
Duan and Mu, 2009). If an initial perturbation is large enough
to invalidate the TLM, it is no longer possible to apply the
existing global or local Lyapunov exponents in predictability
studies of chaotic systems (Kalnay and Toth, 1995).

In view of the limitations of the existing global or lo-
cal Lyapunov exponents, Ding and Li (2007) introduced the
concept of the nonlinear local Lyapunov exponent (NLLE).
The NLLE measures the average growth rate of the initial er-
rors of nonlinear dynamical models without linearizing the
governing equations. The experimental results of Ding and
Li (2007) show that, compared with a linear local or finite-
time Lyapunov exponent, the NLLE is more appropriate for
the quantitative determination of the predictability limit of a
chaotic system. Based on observational or reanalysis data, the
NLLE method has been used to investigate the atmospheric
predictability at various timescales (Ding et al., 2008, 2010,
2011, 2016; Li and Ding, 2008, 2011, 2013).

However, recall that the NLLE defined by Ding and Li
(2007) only characterizes the nonlinear growth rate of the ini-
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tial perturbations along the fastest growing direction, which
is insufficient to describe the expanding or contracting nature
of the initial perturbations along different directions in phase
space. This explains why the Lyapunov exponent spectrum,
rather than only the largest Lyapunov exponent, was intro-
duced in the traditional Lyapunov theory. Therefore, for an
n-dimensional chaotic system, it is necessary to extend the
definition of the NLLE from one- to n-dimensional spectra,
as this would allow us to investigate nonlinear evolution be-
haviors of initial perturbations along different directions in
phase space.

In this paper, we first introduce the definition of the NLLE
spectrum, and then propose a method to compute the NLLE
spectrum. Finally, we demonstrate the validation and useful-
ness of the NLLE spectrum in characterizing the nonlinear
evolutionary behaviors of initial perturbations along different
directions, and in measuring the predictability limit of chaotic
systems, by applying it to three chaotic systems.

2. Definition and calculation of the NLLE
spectrum

For an n-dimensional nonlinear dynamical system, each
initial error vector tends to fall along the fastest growing di-
rection (Wolf et al., 1985). Therefore, for any initial error
vector &’ (fy), after a short time T, the error vector 6’ (7 + 1)
will capture the fastest growing direction. If this short time
7 is not taken into consideration, instead, taking &’(zp + 7) as
the initial error 6(7p), the first NLLE along the fastest growing
direction can be defined as

1 )
A4 (x(1),8(10).7) = ~ In W : )

where A1(x(f9),6(tp), 7) depends on the initial state x(7o) in
phase space, the magnitude of the initial error vector é(#g) =
[[6(2p)]|, and the evolution time 7 (Ding and Li, 2007). Note
that the direction of the fastest growing initial error vector
6(tp) is determined by the local state x(fp) in phase space,
and A; is therefore independent of the direction of 6(zy) and
dependent only on its magnitude 6(y).

Once the first NLLE, A;(x(tp),6(ty),7), has been ob-
tained, the mth NLLE along the mth fastest growing di-
rection can be successively determined from the growth
rate of the volume V), of m-dimensional subspace spanned
by the orthogonal vector set of initial errors Q,(fy) =
(61(20),62(t0), -+ 2Om(to)) (m=2,3,-+--- ,1):

. (m

n 1 m m
Zﬂiz_lnM Z23, ), ()
i=1

T Vin(Qu(to))

where A; = 4;(x(ty),6(2y), 7) is defined as the ith NLLE of the
dynamical system; 8;(#p) is equal to é(¢p) in Eq. (1), which
captures the local direction of the most rapid growth; and
0;(th) i=2,3,--+-- ,m) is the ith fastest growing initial error
vector. These initial error vectors, 61(ty),62(tg), - ,0,,(10),
have the same magnitude 6(zy), but they are orthogonal to
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each other. After 6;(y) is obtained, 8;(ty) (i = 2,3,------ ,m)
can be successively determined by comparing their error
growth rates.

It has already been pointed out that each error vector in
a chaotic system generally converges towards the local direc-
tion of most rapid growth (Wolf et al., 1985). Due to the fi-
nite precision of computer calculations, the collapse towards
a common direction causes the orientation of all error vec-
tors to become indistinguishable. As a result, the calculation
of the volume V,, of m-dimensional subspace becomes ex-
tremely difficult. This problem can be overcome by the re-
peated use of the Gram—Schmidt reorthogonalization (GSR)
procedure on the vector frame (Bjorck, 1967, 1994). In the
GSR procedure, the first vector, whose direction is never af-
fected, tends to freely seek out the fastest growing direc-
tion (vectors along other directions are either growing less
rapidly or shrinking); the second vector is projected onto
the subspace orthogonal to the first vector and, iteratively,
the nth vector is projected onto the subspace orthogonal to
the previous n —1 vector. That is, given a set of vectors

{vi,vp, - ,v,}, the GSR provides the following orthogo-
nal set {v’l,v’z, ~~~~~~ RVAS
v] = vl >
» (Vz,V'l)v, )
2= V2 1>
"1"’1)
/ /
R _MV' e (v"’vl)v' 3)
n— 'n ’ / n—1 75 1
AP AR v

Note that error vectors in the GSR are not rescaled (i.e.,
dividing the vectors by their magnitudes) because of the de-
pendence of the nonlinear growth of error vectors on their
magnitudes. This is an important difference between the cal-
culations of nonlinear and linear Lyapunov exponent spec-
tra. The linear Lyapunov exponent spectral calculation re-
quires the reorthonormalization of error vectors at each step
of the GSR procedure (Wolf et al., 1985). It can be seen that
the subspace spanned by the first m vectors is unaffected by
GSR, so that the volume defined by these m vectors is not
changed before and after the GSR procedure. In practice,
as v’l,v’z, ~~~~~~ ,v,, are orthogonal to each other, represent-
ing the vectors along the directions from most rapid growth
to most rapid decline, we may determine the ith NLLE, A;
(i=1,2,------ ,n), directly from the growth rate of vector V:'
relative to the initial vector v;. In addition to the GSR method
(also referred to as the Wolf method), the spectrum of tradi-
tional Lyapunov exponents can be computed using the singu-
lar value decomposition (SVD) of the Jacobian matrix (re-
ferred to the Jacobian method) (Barana and Tsuda, 1993).
However, because the error growth equations governing the
NLLE are not linearized, the NLLE spectrum cannot be com-
puted using the SVD of the Jacobian matrix. This is another
difference between the calculations of nonlinear and linear
Lyapunov exponent spectra.

To study the dynamic characteristics of the whole sys-
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tem, the ensemble average of the ith NLLE, 4;(6(tp),7) =
(Ai(x(tg),6(19), 7)) (i = 1,2, ,n, and the symbol ( ) de-
notes the ensemble average over a great number of differ-
ent initial states) should be introduced, and then the ith
mean relative growth of initial error (RGIE), E;(8(fy),7) =
exp(1;(6(t),T)T), can be obtained. In light of dynamical
systems theory and probability theory, Ding and Li (2007)
proved a saturation theorem of E1(6(19),7); that is, for a
chaotic system, E\(8(tp),7) will necessarily reach a satura-
tion value in a finite time interval. According to this theorem,
the average predictability limit of an error vector along the
fastest growing direction could be quantitatively determined
as the time at which E(6(),7) reaches its saturation level.
In addition to E(6(19), ) (corresponding to the fastest grow-
ing directions), it would be possible for several Ei(6(19),7)
(i > 2, corresponding to other growing directions) to finally
reach their respective saturation levels in a high-dimensional
chaotic system. Therefore, we can also quantitatively deter-
mine the predictability limits of these several Ei(6(t9),7) ac-
cording to their respective saturation levels.
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3. Results

Once the NLLE spectrum and corresponding RGIEs are
obtained, we can examine the evolutionary behaviors of the
NLLE spectrum and corresponding RGIEs in a multidimen-
sional chaotic system. Our method for computing the NLLE
spectrum is tested on three dynamical systems with different
complexity: the 3-variable Lorenz system (Lorenz, 1963), the
4-variable hyperchaotic Lorenz system (Li et al., 2005; Wang
and Liu, 2006), and the 40-variable Lorenz96 model (Lorenz,
1996). The 3-variable Lorenz system is

X=-0X+0Y
Y=rX-Y-XZ , (4)
Z=XY-bZ

where X, Y, Z are state variables, o = 10, r =28, and b = 8/3,
for which the well-known butterfly attractor exists. Figure 1
shows the Lorenz system’s A; and 1nE,- (i=1,2,3) as a func-
tion of time 7. As can be seen, A; initially remains constant
at around 0.91, then decreases rapidly, and finally approaches
zero as 7 increases (Fig. 1a). Ding and Li (2007) proved that
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Fig. 1. The Lorenz s_ystem’s mean NLLEs A; [(a)i=1,
ing mean RGIEs InE; [(d)i=1,(e)i=2,(f)i=3], as
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(b) i =2, (c) i = 3], and the logarithm of the correspond-
a function of time 7. The magnitudes 6(7g) of the initial

error vectors are all 107%, but their directions are orthogonal to each other.
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Ay decreases asymptotically in a similar manner to O(1/7)
as 7 tends to infinity. Correspondingly, E; initially increases
exponentially, then its growth rate slows, and finally stops in-
creasing and reaches a saturation value (Fig. 1d). A initially
remains constant near zero, and then decreases gradually as
7 increases (Fig. 1b). Accordingly, Ez initially remains al-
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most constant, and then decreases gradually towards zero
(Fig. le). A3 initially moves rapidly towards a large negative
value (—14.5), and subsequently remains almost constant at
this value (Fig. 1c). Correspondingly, E3 decreases exponen-
tially from the beginning and rapidly approaches zero (Fig.
1f).
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Fig. 2. The hyperchaotic Lorenz system’s mean NLLEs A; [(a) i = 1, (b) i =2, (c) i = 3, (d) i = 4], and the

logarithm of the corresponding mean RGIEs InE; [(e)

i=1,)i=2,(g) i=3, (h)i=4], as afunction of time

7. The magnitudes &(7g) of the initial error vectors are all 10~°, but their directions are orthogonal to each other.
Due to the finite precision of computer calculations, the error along the most rapidly shrinking direction will
become indistinguishable, and so the possible evolutions of A4 and In E4 are denoted by the dashed lines in (d)

and (h), respectively.
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Three Lyapunov exponents of the Lorenz system under
given parameters are 0.906, 0, and —14.572 (Wolf et al.,
1985). Note that these values of the Lyapunov exponents are
close to those of the NLLEs at the initial phase (i.e., the phase
of the NLLEs remaining almost constant) in the Lorenz sys-
tem (Figs. la—c), indicating that when the errors are small
enough to validate the TLM, the error growth rates measured
by the NLLE spectrum are close to the Lyapunov exponents.
However, as the errors increase, error evolution enters the
nonlinear phase, the TLM is no longer valid, and the error
growth rates measured by the NLLE spectrum show different
behaviors from those during the linear phase. These results
indicate that the NLLE spectrum may realistically reflect the
time-varying characteristics of error growth rates along dif-
ferent directions from the linear to nonlinear phases of error
growth. This represents an improvement over the traditional
Lyapunov exponent spectrum, which only characterizes the
error growth rates during the linear phase of error growth.

The hyperchaotic Lorenz system is formulated by intro-
ducing an additional state variable into the 3-variable Lorenz
system. The equations that describe the hyperchaotic Lorenz
system are

X1 = a(x2 —x1)
Xo=bxy+cxp—x1x3+ x4
X3 =—dx3+x1x2

X4 = —kxq

, (&)

where x; (i = 1,2,3,4) are state variables, a, b, ¢, d, and k are
system parameters. Here, takinga =35,b=7,c=12,d =3,
and k = 5, the hyperchaotic attractor exists (Li et al., 2005;
Wang and Liu, 2006). As can be seen from Fig. 2, A, 43,
and A4 of the hyperchaotic Lorenz system have similar time-
varying characteristics to Ay, A3, and A4, respectively, of the
Lorenz system. Therefore, a detailed description of the time
evolution of 2; and E; (i = 1,3,4) of the hyperchaotic Lorenz
system is not given here. Next, we place more emphasis on
the evolutions of 1, and Ez, and their influences on the pre-
dictability estimate of the hyperchaotic Lorenz system.

In the hyperchaotic Lorenz system, A, initially remains a
positive constant, and then decreases gradually and changes
from positive to negative as 7 increases (Fig. 2b). Corre-
spondingly, E, initially increases, and then decreases grad-
ually after reaching its maximum value (Fig. 2f). Because
the maximum value of E, is far below the saturation value of
E\, E, no longer plays an important role in the error growth
of the hyperchaotic Lorenz system. As mentioned earlier,
the traditional Lyapunov theory uses the inverse of the sum
of all the positive Lyapunov exponents (an estimate of the
Kolmogorov entropy) as a measure of the total predictabil-
ity of chaotic systems (Kolmogorov, 1941; Fraedrich, 1987,
1988). In this case, the second Lyapunov exponent will play
an important role in limiting the predictability of the hyper-
chaotic Lorenz system (the traditional Lyapunov exponents
of the hyperchaotic Lorenz system under given parameters
are 0.41, 0.20, 0.00, and —26.7). These results indicate that
the traditional Lyapunov exponents, based on linear error dy-
namics, may be insufficient to estimate the predictability time
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because they only consider the linear phase of error growth,
without considering the nonlinear phase during which error
growth either slows down or decreases gradually after the er-
ror initially increases exponentially. From this point of view,
the NLLE spectrum is more suitable for characterizing the
predictability of chaotic systems.

Our method for computing the NLLE spectrum is also
applied to the Lorenz96 model. The model has 40 state vari-
ables, X1,Xp,------ , X410, which are governed by the equation
dX;/dt = (Xi+1 —Xi—2)Xi—1 — X;+ F, where the index 1 <i <40
is arranged cyclically, and F is a fixed forcing. When F = 8.0,
the model displays sensitive dependence on the initial condi-
tions (Lorenz, 1996). The Lorenz96 model has been used as a
low-order proxy for atmospheric prediction and assimilation
studies. Similar to the cases of the 3-variable and 4-variable
Lorenz systems presented above, the NLLE spectrum of the
Lorenz96 model initially remains close to its Lyapunov expo-
nent spectrum, but depart from each other afterwards as error
growth enters the nonlinear phase (Fig. 3a). Note that in Fig.
3a only the first 12 NLLEs [;(6(%o),7), i < 12] are shown; the
remaining NLLEs, 2;(6(tp),7), are not shown due to space
limitations. The first 12 RGIEs [i.e., Ei(8(f),7), i < 12]
finally reach saturation (Fig. 3b), and the rest, E((S(to),'r)
(13 < i < 40), decrease gradually after reaching a maximum
value, or decrease directly from the beginning (not shown).
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Fig. 3. The Lorenz96 model’s (a) mean NLLEs 1; (i < 12),
and (b) the logarithm of the corresponding mean RGIEs lnE
(i < 12), as a function of time 7. The magnitudes &(zy) of the
initial error vectors are all 107, but their directions are orthog-
onal to each other.
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Following the work of Dalcher and Kalnay (1987), we de-
termine the predictability limit as the time at which the error
reaches 98% of its saturation level. The predictability limits
determined from the curves of these 12 RGIEs are shown in
Fig. 4. the results show that a more rapid initial growth of
error vectors generally corresponds to a lower predictability
limit, and the predictability limit of E-((S(to),'r) (i <£12) in-
creases more and more quickly with increasing i. As a result,
the predictability limits show significant variations among er-
ror vectors of different directions, ranging from 11.5 to 50.1,
suggesting that the predictability limit is highly sensitive to
the direction of the initial error vector in the Lorenz96 model.
These results further indicate that the NLLE method can ef-
fectively separate the slowly and rapidly growing perturba-
tions, which is very important for studies of predictability and
error growth dynamics.

The three examples presented above are all noise-free dy-
namical systems. However, noise is inevitably present in ex-
perimental and natural systems. The effect of noise on the es-
timation of the linear Lyapunov exponent spectrum has been
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Fig. 4. Predictability limits (dimensionless) determined from
the curves of the first 12 RGIEs [i.e., E;(6(fo),7), i < 12] in the
Lorenz96 model. The magnitudes 8(#y) of initial error vectors
are set to 107°.

noted in previous studies (e.g., Wolf et al., 1985; Brown et al.,
1991). It is of interest and importance to explore the effects
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Fig. 5. Mean NLLEs 2; (i = 2,4,6,8,10,12) of the Lorenz96 model, as a function of time 7, obtained from
noise-free (red line) and noise-contaminated (blue and green lines) data. The magnitudes of initial error vectors
are 107°, and the magnitudes of Gaussian white noise are 10~ (blue line) and 10~ (green line), respectively.
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of noise on the calculation of the NLLE spectrum. For this
purpose, we add measurement noise to the Lorenz96 model,
that is, a small Gaussian white noise is added to each element
of the time series of 40 variables of the Lorenz96 model af-
ter the entire series of all 40 variables have been generated.
The NLLE spectrum is then computed based on these noise-
contaminated data (Fig. 5). For noise of relatively small am-
plitude (magnitude of noise smaller than that of the initial er-
ror), the NLLE spectrum is not greatly affected by the noise.
In contrast, for noise of sufficiently large amplitude (mag-
nitude of noise close to that of the initial error), the NLLE
spectrum cannot be accurately determined. The results sug-
gest that the effects of noise should be considered for an ac-
curate estimation of the NLLE spectrum. Wolf et al. (1985)
pointed out that low-pass filtering may be a feasible approach
to reduce the effects of noise, which provides some direction
for improving the estimation of the NLLE spectrum in the
presence of noise.

4. Conclusion

To conclude, for an n-dimensional chaotic system, we ex-
tend the definition of the NLLE from one- to n-dimensional
spectra. Our experimental results from three dynamical sys-
tems with different complexity show that the NLLEs con-
verge to the Lyapunov exponents during the linear phase of
error growth, but they deviate from the Lyapunov exponents
during the nonlinear phase of error growth. This time de-
pendence of the NLLE spectrum realistically characterizes
the growth rates of initial error vectors along different direc-
tions from the linear to nonlinear phases of error growth. This
represents an improvement over the traditional Lyapunov ex-
ponent spectrum, which only characterizes the error growth
rates during the linear phase of error growth. In addition, be-
cause the NLLE spectrum can effectively separate the slowly
and rapidly growing perturbations, it is shown to be more
suitable for estimating the predictability of chaotic systems,
as compared to the traditional Lyapunov exponent spectrum.

Our results present a preliminary application of the NLLE
spectrum in studies of error growth and predictability in sev-
eral relatively simple systems. For a more complex system,
such as weather and climate, there are many types of insta-
bilities (Toth and Kalnay, 1993, 1997; Trevisan and Legnani,
1995; Norwood et al., 2013). These instabilities generally
show different error growth rates and thereby have different
predictability times. It would be interesting to extend the
investigation to more realistic weather and climate systems,
which we intend to do in future research.
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